
Lie symmetries for equations in conformal geometries

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 4419

(http://iopscience.iop.org/0305-4470/38/20/009)

Download details:

IP Address: 171.66.16.66

The article was downloaded on 02/06/2010 at 20:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 4419–4431 doi:10.1088/0305-4470/38/20/009

Lie symmetries for equations in conformal geometries

S Hansraj1, S D Maharaj1, A M Msomi2 and K S Govinder1

1 Astrophysics and Cosmology Research Unit, School of Mathematical Sciences,
University of KwaZulu-Natal, Durban 4041, South Africa
2 Department of Mathematics, Technikon Mangosuthu, Durban 4000, South Africa

E-mail: hansrajs@ukzn.ac.za, maharaj@ukzn.ac.za and govinder@ukzn.ac.za

Received 19 November 2004, in final form 31 March 2005
Published 3 May 2005
Online at stacks.iop.org/JPhysA/38/4419

Abstract
We seek exact solutions to the Einstein field equations which arise when two
spacetime geometries are conformally related. Whilst this is a simple method to
generate new solutions to the field equations, very few such examples have been
found in practice. We use the method of Lie analysis of differential equations
to obtain new group invariant solutions to conformally related Petrov type D
spacetimes. Four cases arise depending on the nature of the Lie symmetry
generator. In three cases we are in a position to solve the master field equation
in terms of elementary functions. In the fourth case special solutions in terms
of Bessel functions are obtained. These solutions contain known models as
special cases.

PACS numbers: 02.30.Gp, 02.30.Jr

1. Introduction

Exact solutions, as opposed to computer generated solutions, of the Einstein field equations
are of immense importance in understanding the behaviour of a large variety of celestial
phenomena. The literature abounds with many different techniques that have been invoked in
an effort to obtain new exact solutions for different configurations of matter.

Conformal transformations, as a mathematical procedure, have also been successfully
utilized in obtaining new solutions. This is amply illustrated by the comprehensive model
of Castejon-Amenedo and Coley (1992). Further, it is known that conformal structures play
an important role in twistor theory (Penrose 1999). The restrictive feature of such analyses,
however, is the complexity and nonlinearity of the resultant field equations. Some researchers
have adopted the Newman–Penrose formalism which, on account of severe integrability
constraints arising out of the Bianchi identities, has not proved fruitful in general.

An alternative is to assume the existence of a conformal symmetry on the manifold in order
to generate solutions to the Einstein field equations, as these symmetries impose additional
restrictions on the metric tensor field and the field equations may be simplified. The physical
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significance of conformal Killing vectors is that they generate constants of the motion along
null geodesics for massless particles.

The maximal spanning G15 of conformal motions for Minkowski space is given by
Choquet-Bruhat et al (1982) and for Robertson–Walker spacetimes by Maartens and Maharaj
(1986). In addition the conformal geometries of the pp-wave spacetimes (Maartens and
Maharaj 1991), static spherically symmetric spacetimes (Maartens et al 1995, 1996), Bianchi I
and V locally rotationally symmetric spacetimes (Moodley 1992) and Stephani spacetimes
(Moopanar 1993) have been completely determined. Kramer (1990) was able to generate
a class of metrics for rigidly rotating perfect fluids which admit a proper conformal Killing
vector. Additionally, rigidly rotating perfect fluids admitting two Killing vectors and a proper
conformal Killing vector were studied by Kramer and Carot (1991). Axisymmetric spacetimes,
in the general case of differential rotation, were examined by Mars and Senovilla (1993, 1994).

Several new results, utilizing this conformal symmetry approach, have recently been
obtained by Castejon-Amenedo and Coley (1992), Coley and Tupper (1990a, 1990b, 1990c),
Dyer et al (1987) and Maharaj et al (1991). In particular, Maartens and Mellin (1996) used the
conformal symmetries of Bianchi I spacetime to demonstrate that the expansion of anisotropic
radiation universes tends towards isotropy at late times.

Our interest lies in spacetimes that admit an s-dimensional Lie algebra Cs of conformal
motions. We exploit the Defrise-Carter theorem (1975) to generate new models of perfect
fluids. We select a spacetime of Petrov type D and its conformally related counterpart in an
effort to obtain new solutions to the associated Einstein field equations. We analyse the field
equations and show that they can be reduced to a simpler form. The results of Castejon-
Amenedo and Coley are regained as a special case of a more general class of exact solutions.
Group invariant solutions to a particular field equation which acts as a master equation for the
entire system are sought. This analysis generates a rich class of solutions. A number of cases
arise depending on the nature of the Lie symmetry generator. In all cases we are in a position to
provide solutions to the master field equation in terms of elementary functions. This analysis
demonstrates the value of the Lie analysis of differential equations in this application.

2. Spacetime geometry

We consider the line element

ds2 = −dt2 + dx2 + e2ν(y,z)(dy2 + dz2) (1)

which is of Petrov type D. The spacetime (1) admits three Killing vectors

X1 = ∂

∂t
(2)

X2 = ∂

∂x
(3)

X3 = x
∂

∂t
+ t

∂

∂x
(4)

which obey the commutation relations

[X1, X2] = 0 [X1, X3] = 0 [X2, X3] = 0.

The Lie algebra of Killing vectors is a G3 of motions, with the group structure satisfying the
above relations.

Suppose that a manifold (M, g) is neither conformally flat nor conformally related to a
generalized plane wave. Then according to a theorem due to Defrise-Carter (1975), a Lie
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algebra of conformal Killing vectors on M with respect to g can be regarded as a Lie algebra
of Killing vectors with regard to some metric on M conformally related to g. Therefore
if a spacetime admits the conformal group Cs , then either it is conformally flat (s = 15),
conformally related to a generalized plane wave (s � 7), or the metric ḡab = e2Ugab where
gab admits an s-dimensional (s � 6) isometry group. The last possibility is evident above,
and so as our starting point we consider the conformally related metric

ds2 = e2U [−dt2 + dx2 + e2ν(y,z)(dy2 + dz2)] (5)

where U = U(t, x, y, z). The Killing vectors (2)–(4) are now conformal Killing vectors of
the conformally related spacetime (5). The Weyl conformal tensor is given by

3e2νC̄0101 = −6C̄0202 = −6C̄0303 = 6C̄1212

= 6C̄1313 = 3
5 e−2νC̄2323 = 3

5 e−2νC̄3232 = νyy + νzz

which clearly indicates that the metric (5) is not conformally flat in general. (We use the
notation that overhead bars on quantities are defined in the conformally related spacetimes
(5).) Note that νyy + νzz is not zero. We make the assumption that

νyy + νzz = −2k e2ν (6)

where k is a nonzero constant. This choice is made on the grounds of simplicity and follows
the treatment of Castejon-Amenedo and Coley (1992). In addition if k = 0 then the line
element (1) becomes flat, and consequently (5) would be conformally flat. Condition (6), with
k �= 0, obviates this occurrence.

To determine the perfect fluid energy–momentum tensor, we select a fluid 4-velocity
vector u that is noncomoving with the form

ua = e−U
(

cosh vδa
0 + sinh vδa

1

)
(7)

where v = v(t, x). Note that a trivial calculation reveals that for v = constant, the perfect
fluid Einstein field equations would imply conformal flatness.

3. Field equations and kinematics

The Einstein field equations are given by

UtUy − Uty = 0 (8)

UtUz − Utz = 0 (9)

UxUy − Uxy = 0 (10)

UxUz − Uxz = 0 (11)

UtUx − Utx = − 1
4 (µ + p) e2U sinh 2v (12)

UyUz − Uyz + νzUy + νyUz = 0 (13)
−2Uxx − U 2

x + 3U 2
t − e−2ν

(
2Uyy + 2Uzz + U 2

y + U 2
z + νyy + νzz

)
= (µ + p) e2U cosh2 v − p e2U (14)

−2Utt − U 2
t + 3U 2

x + e−2ν
(
2Uyy + 2Uzz + U 2

y + U 2
z + νyy + νzz

)
= (µ + p) e2U sinh2 v + p e2U (15)

2Uzz + U 2
z + 3U 2

y + 2νyUy − 2νzUz + e2ν
(
2Uxx − 2Utt + U 2

x − U 2
t

) = p e2ν+2U (16)

2Uyy + U 2
y + 3U 2

z − 2νyUy + 2νzUz + e2ν
(
2Uxx − 2Utt + U 2

x − U 2
t

) = p e2ν+2U (17)

for the line element (5).
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The vorticity ω̄ab is given by

ω̄ab = 0

so that the gravitational field is irrotational. The components of the acceleration ¯̇ua are

¯̇u0 = −[(vx + Ut) sinh2 v + (vt + Ux) cosh v sinh v] (18)

¯̇u1 = (vt + Ux) cosh2 v + (vx + Ut) cosh v sinh v (19)

which are nonzero in general. The expansion �̄ is given by the expression

�̄ = e−U [(vt + Ux) sinh v + (vx + Ut) cosh v]. (20)

The shear tensor components have the form

σ̄00 = 1
3 [(2 sinh2 v − 1) eU + e−U ][(vt + Ux) sinh v + (vx + Ut) cosh v] (21)

σ̄01 = − 2
3 eU sinh v cosh v[(vt + Ux) sinh v + (vx + Ut) cosh v] (22)

σ̄11 = 1
3 [(2 cosh2 v + 1) eU − e−U ][(vt + Ux) sinh v + (vx + Ut) cosh v] (23)

σ̄22 = − 1
3 e2ν−U [(vt + Ux) sinh v + (vx + Ut) cosh v] = σ̄33 (24)

which do not vanish in general. From (18)–(24) we observe that the fluid congruences of the
conformally related line element (5) are accelerating, expanding and shearing.

4. Reduction of the field equations

The most general functional form admitted by equations (8)–(11) is

e−U = f (t, x) + h(y, z) (25)

where f and h are arbitrary. The remaining field equations (12)–(17), respectively, then
assume the following form:

2(f + h)ftx = −(µ + p) cosh v sinh v (26)

hyz = νzhy + νyhz (27)

−3
(
f 2

t − f 2
x

) − 2(f + h)fxx − 2k(f + h)2

+ e−2ν
[
3
(
h2

y + h2
z

) − 2(f + h)(hyy + hzz)
] = −(µ + p) cosh2 v + p (28)

−3
(
f 2

t − f 2
x

)
+ 2(f + h)ftt − 2k(f + h)2

+ e−2ν
[
3
(
h2

y + h2
z

) − 2(f + h)(hyy + hzz)
] = (µ + p) sinh2 v + p (29)

−3
(
f 2

t − f 2
x

)
+ 2(f + h)(ftt − fxx) + e−2ν

[
3
(
h2

y + h2
z

)
− 2(f + h)(νyhy − νzhz + hzz)

] = p (30)

−3
(
f 2

t − f 2
x

)
+ 2(f + h)(ftt − fxx) + e−2ν

[
3
(
h2

y + h2
z

)
− 2(f + h)(νzhz − νyhy + hyy)

] = p (31)

where the variable U has been replaced by f and h via (25).
The dynamical quantities have the following forms:

p = −3
(
f 2

t − f 2
x

)
+ 2(f + h)(ftt − fxx) + e−2ν

(
3
(
h2

y + h2
z

) − (f + h)(hyy + hzz)
)

(32)
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for the pressure p, and

µ = 3
(
f 2

t − f 2
x

)
+ 4k(f + h)2 − 3e−2ν

((
h2

y + h2
z

) − (f + h)(hyy + hzz)
)

(33)

for the energy density µ. We now seek an expression for the quantity v(t, x). This is
accomplished by first substituting (32) in (28) for p (but we retain the p cosh2 v term) to give

(µ + p) cosh2 v = 2(f + h)ftt + 2k(f + h)2 + e−2ν(f + h)(hyy + hzz). (34)

On substituting (32) into (29) for p (but we retain the p sinh2 v term) we get

(µ + p) sinh2 v = 2(f + h)fxx − 2k(f + h)2 − e−2ν(f + h)(hyy + hzz). (35)

Dividing (35) by (34) yields

tanh2 v = 2fxx − 2k(f + h) − e−2ν(hyy + hzz)

2ftt + 2k(f + h) + e−2ν(hyy + hzz)
. (36)

Another expression for tanh v may be obtained by dividing (35) with (26) to give

tanh2 v = (2fxx − 2k(f + h) − e−2ν(hyy + hzz))
2

4f 2
tx

.

Comparing this equation with (36) yields the differential equation

f 2
tx = (2fxx − 2k(f + h) − e−2ν(hyy + hzz))(2ftt + 2k(f + h) + e−2ν(hyy + hzz)). (37)

On rearranging (36) we obtain

2fxx − 2ftt tanh2 v

tanh2 v + 1
− 2kf = 2kh + e−2ν(hyy + hzz)

from which it is clear that the left-hand side is a function of t and x whereas the right-hand
side is a function of y and z. This implies that the variables separate, and we can put

2fxx − 2ftt tanh2 v

tanh2 v + 1
− 2kf = 2kh + e−2ν(hyy + hzz) = α

where α is a constant. We thus derive the expression

hyy + hzz = e2ν(α − 2kh). (38)

Equation (38) further simplifies the system (26)–(31).
From the above analysis it is clear that the field equations (26)–(31) can be expressed in

a simpler form. The resulting system is given by

µ = 3
(
f 2

t − f 2
x

)
+ (f + h)(4kf − 2kh + 3α) − 3e−2ν

(
h2

y + h2
z

)
(39)

p = −3
(
f 2

t − f 2
x

)
+ (f + h)(2ftt − 2fxx + 2kh − α) + 3e−2ν

(
h2

y + h2
z

)
(40)

tanh2 v = 2fxx − 2kf − α

2ftt + 2kf + α
(41)

f 2
tx = 1

4
(2fxx − 2kf − α)(2ftt + 2kf + α) (42)

hyz = νzhy + νyhz (43)

hyy − hzz = 2νyhy + 2νzhz. (44)

The system (39)–(44), subject to condition (6), namely νyy + νzz = −2k e2ν , must be solved
in order to generate a conformally related perfect fluid model.
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Castejon-Amenedo and Coley have considered the case h = constant; this constant may
be effectively absorbed intof without any loss of generality, and we can consequently set

h = 0.

With this value of h the Einstein field equations (39)–(44) reduce to

p = −3
(
f 2

t − f 2
x

)
+ 2f (ftt − fxx) (45)

µ = 3
(
f 2

t − f 2
x

)
+ 4kf 2 (46)

v = tanh−1

(
kf − fxx

ftx

)
(47)

f 2
tx = (ftt + kf )(fxx − kf ) (48)

which is in agreement with the equations used by Castejon-Amenedo and Coley (1992). Note
that (45)–(48) corresponds to h = α = 0. It is possible in (39)–(44) to have α = 0 with h �= 0.
This naturally leads to two categories of exact solutions that we now present.

5. An extension of the Castejon-Amenedo and Coley solutions: h = 0

This category of solutions corresponds to h = α = 0. In order to generate a solution to
the system (45)–(48), it is sufficient to obtain a form for f = f (t, x); in other words (48)
must be integrated. To obtain a solution, Castejon-Amenedo and Coley have assumed that the
variables separate and set

f (t, x) = F(t)G(x) (49)

which yields the differential equations

FF̈ − γ Ḟ 2 + kF 2 = 0 (50)

GG′′ − 1

γ
G′2 − kG2 = 0 (51)

where γ is a constant.

5.1. Case I. γ = 1

It is easy to solve equations (50), (51) in general. As a result, the system (45)–(47) reduces to

µ = ek(x2−t2)+2k1t+2k2x
[
3k2(t2 − x2) − 6k(k1t + k2x) + 3

(
k2

1 − k2
2

)
+ 4k

]
(52)

p = ek(x2−t2)+2k1t+2k2x
[−k2(t2 − x2) + 2k(k1t + k2x) − (

k2
1 − k2

2

) − 4k
]

(53)

tanh v = kx + k2

kt − k1
. (54)

This general solution contains the solution of Castejon-Amenedo and Coley when we set

k1 = k2 = 0

in (52)–(54). For this choice of constants we obtain

µ = ek(x2−t2)[3k2(t2 − x2) + 4k] (55)
p = ek(x2−t2)[k2(x2 − t2) − 4k] (56)

tanh v = x

t
(57)
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which is the exact solution of Castejon-Amenedo and Coley (1992). Consequently, we have
extended their solution (55)–(57) to the more general class (52)–(54).
For the exact solution (52)–(54) we obtain

µ + p = 2ek(x2−t2)+2k1t+2k2x
[
k2(t2 − x2) − 2k(k1t + k2x) +

(
k2

1 − k2
2

)]
µ + 3p = −8k ek(x2−t2)+2k1t+2k2x

µ − p = 4ek(x2−t2)+2k1t+2k2x
[
k2(t2 − x2) − 2k(k1t + k2x) +

(
k2

1 − k2
2

)
+ 2k

]
and it is possible to study the weak, dominant and strong energy conditions. We note that the
appearance of the constants k1 and k2 allows for a wider range of behaviour for our class of
solutions than is the case with the Castejon-Amenedo and Coley (1992) exact solution. For
this model ¯̇ua = 0 so that the field is nonaccelerating; however both σ̄ab and �̄ are nonzero
which implies that the gravitational field is shearing and expanding.

5.2. Case II. γ �= 1

The case with γ �= 1 in (45) is of interest in generating cosmological models for investigating
a wider range of physical behaviour. The transformations

F = u
1

1−γ

1 , G = u
γ

γ−1

2

reduce equations (50)–(51) to

ü1 + k(1 − γ )u1 = 0 u′′
2 + k

(1 − γ )

γ
u2 = 0

which are linear in u1 and u2 respectively. The solutions of this system of differential equations
are easily obtained in terms of elementary functions, and consequently we do not present their
explicit forms here.

6. Group invariant solutions: h =/ 0

This category of solutions corresponds to h �= 0 with α = 0. It is possible to solve the more
general system (39)–(44) with h �= 0. If we take h = h(y), then (43) implies that ν = ν(y).
Consequently, condition (6) becomes the ordinary differential equation

νyy = −2k e2ν . (58)

Equation (44) reduces to

hy = C e2ν (59)

where C is a constant of integration. The general solution to (58) and (59) is given by

e2ν = −A

k
cosech2(

√
2Ay + B) (60)

h(y) = C
√

A√
2k

coth(
√

2Ay + B) + D (61)

where A,B and D are constants of integration. In order to complete the solution, we need to
solve (42) and obtain f as this immediately yields expressions for p, µ and v. We now focus
our attention on (42) with α = 0, i.e.

f 2
tx = (ftt + kf )(fxx − kf ) (62)

with the objective of generating solutions in a systematic manner. We achieve this by invoking
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the method of Lie group analysis of differential equations (Olver 1993). The Lie symmetry
generators of (62) are found with the help of the computer package PROGRAM LIE (Head 1993).
The infinitesimal Lie symmetry generators for the partial differential equation (62) are

Z1 = ∂

∂t
(63)

Z2 = ∂

∂x
(64)

Z3 = x
∂

∂t
+ t

∂

∂x
(65)

Z4 = f
∂

∂f
. (66)

It is clear that these symmetries form the Lie algebra A3,4 ⊕ A1 (Patera and Winternitz 1977)
with basis given by

G1 = Z1 + Z2 (67)

G2 = Z1 − Z2 (68)

G3 = Z3 (69)

G4 = Z4. (70)

It is this basis that we will use in our subsequent analysis. Before proceeding further, we
observe that (62) is invariant under the following discrete transformations:

f → −f (71)

t → −t (72)

and

x → −x. (73)

Taking these reflections into account, we have

G4 → −G4 (74)

G2 → −G1 (75)

and

G3 → −G3. (76)

We also note that x → −x will make G1 = G2.
In order to obtain group invariant solutions of (62) (with f = f (t, x) explicitly), we only

need to consider the following symmetry combinations (Msomi 2003):

G1 = ∂

∂t
+

∂

∂x
(77)

G4 = f
∂

∂f
(78)

G1 + G4 = ∂

∂t
+

∂

∂x
+ f

∂

∂f
(79)

G3 + βG4 = x
∂

∂t
+ t

∂

∂x
+ βf

∂

∂f
(80)

G1 + G2 + βG4 = 2
∂

∂t
+ βf

∂

∂f
(81)

where β is a real arbitrary parameter. All other solutions of (62) obtained via linear
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combinations of the point symmetries (63)–(66) can be obtained from the solutions we report
here. We consider each in turn.

6.1. Invariance under G1

Using G1 we determine the invariants from the invariant surface condition
dt

1
= dx

1
= df

0
(82)

which yields

y = x − t (83)
f = V. (84)

Now, by using the above transformation in equation (62), the partial differential equation is
reduced to

k2V 2 = 0 (85)

i.e.

V = 0. (86)

Thus only trivial travelling wave solutions are possible.

6.2. Invariance under G4

In this case the system has invariants given by

y = t (87)
V = x. (88)

From the above transformation, we cannot reduce (62). There is no ordinary differential
equation to solve.

6.3. Invariance under G1 + G4

Here, the invariants are:

y = x − t (89)
f = V et . (90)

The partial differential equation is reduced by the transformation to the form(
k(1 + k)V 2 + V 2

y − V (2KVy + Vyy)
) = 0 (91)

which is linearizable and has solution

log V = (1 + k)

2
y − (1 + k)

4k
+

C0

2k
+ C1 e−2ky (92)

where C0 and C1 are arbitrary constants, whence

f = exp

(
(1 + k)

2
x +

(1 − k)

2
t − (1 + k)

4k
+

C0

2k
+ C1 e−2k(x−t)

)
(93)

and so we have ‘time-boosted’ travelling wave solutions. With h given by (61) and f by (93)
it is possible to show that there are regions for which µ > 0 and p > 0. This is a desirable
feature because we expect that barotropic matter in cosmological models should have positive
pressures and positive energy densities.
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6.4. Invariance under G3 + βG4

For this case the system has invariants given by

y = x2 − t2 (94)
f = (x + t)βV (95)

which reduces the partial differential equation to

k2V 2 + 4(Vy(1 + β))2 + 8yVyVyy − 4V Vyk(1 + β) − 4V Vyyky + 4V Vyyβ(1 − β) = 0. (96)

This equation is an ordinary differential equation with the single symmetry

Z1 = V
∂

∂V
. (97)

In order to solve the differential equation (96) with one symmetry, we first try to reduce the
order of this equation and see if the resulting equation is easily integrated.

The differential equation (96) has the following reduction variables from (97):

r = y (98)

q = Vy

V
. (99)

Using these invariants in (96), we have

dq

dr
= −k2 − 4q2(1 + β)2 + 4q(1 + β)

8pq − 4qkp − 4(−1 + β)β)
− q2. (100)

In this case, we find that the first-order equation cannot be easily integrated. We would
have to resort to numerical solutions. However, some special solutions can still be found, as
demonstrated later.

6.5. Invariance under G1 + G2 + βG4

In this final case the invariants are

y = x (101)

f = V e
tβ

2 . (102)

The partial differential equation is reduced by this transformation to the form

(β2 + 4k)V Vyy − β2V 2
y − k(β2 + 4k)V 2 = 0 (103)

which has general solution

V = 2
β2+4k

4k

(
− (C1 sin ψ − C2 cos ψ)2

(β2 + 4k)

) β2+4k

8k

(104)

where C1 and C2 are arbitrary constants and

ψ = 2kx√
−β2 − 4k

. (105)

Thus a solution to (62) is given by

f = 2
β2+4k

4k e
tβ

2

(
− (C1 sin ψ − C2 cos ψ)2

(β2 + 4k)

) β2+4k

8k

. (106)



Lie symmetries for equations in conformal geometries 4429

7. A particular solution

In order to investigate the physical properties of the spacetimes obtained, we take a special
case of the intractable result in section 6.4, that of β = 0. In this case the new independent
variable is given by

u = t2 − x2 (107)

and the new functional form is

f (t, x) = f (u) = f (t2 − x2). (108)

As a result, (62) becomes

4u
d2f

du2
+ 2

df

du
+ kf = 0. (109)

We now define new variables a and q via

f (u) = a(u)u1/4 q = u1/2 (110)

and obtain the equation

q2 d2a

dq2
+ q

da

dq
+

(
kq2 −

(
1

2

)2
)

a = 0. (111)

We now distinguish between the two cases k > 0 and k < 0.
For k > 0, (111) can be simplified to

w2 d2a

dw2
+ w

da

dw
+

(
w2 −

(
1

2

)2
)

a = 0 (112)

by the transformation
√

kq = w. Equation (112) is the Bessel equation of order 1
2 , and its

solutions are the linearly independent Bessel functions J 1
2
(w) and J− 1

2
(w) which may be

expressed in terms of elementary trigonometric functions in the following way:

J 1
2
(w) =

√
2

πw
sin w J− 1

2
(w) =

√
2

πw
cos w.

It is a pleasing feature of this model that (62) admits Bessel functions as solutions since many
realistic phenomena are governed by the Bessel equation. The solution to the differential
equation (62), in the original variables t and x, is

f (x, t) = A sin
√

k(t2 − x2) + B cos
√

k(t2 − x2) (113)

where A and B are arbitrary constants. For the solution (113) the quantity v is given by

tanh v = t

x

so that the exact solution corresponding to (113) is not conformally flat.
For k < 0, we make the substitution k = −β2 followed by W = βz. Equation (111) then

has the form

W 2 d2a

dW 2
+ W

da

dW
−

(
W 2 +

(
1

2

)2
)

= 0

which is the modified Bessel equation of order 1
2 . This differential equation admits the

modified Bessel functions

I 1
2

=
√

2

πW
sinh W (114)
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I− 1
2

=
√

2

πW
cosh W (115)

as linearly independent solutions. The solution to the field equation (62), in terms of the
original variables t and x, may be written as

f (x, t) = A sinh
√

k(t2 − x2) + B cosh
√

k(t2 − x2) (116)

analogous to (113).

8. Conclusion

The notion of conformally mapping a given line element to a new metric, such as the
conformally related metric (5), is potentially a very fertile avenue in generating new solutions
to the Einstein field equations. However, the actual number of exact solutions found using this
algorithm is very low as pointed out by Stephani et al (2003). The Petrov type D spacetime
turns out to be a rare metric which is amenable to this approach, and we have therefore focused
our attention on this line element (first considered by Castejon-Amenedo and Coley (1992)).
The Petrov type D model investigated is physically well behaved as there is a barotropic
equation of state; the weak and strong energy conditions are satisfied and it is amendable to a
simple two perfect fluid interpretation.

In order to demonstrate a new solution we had to find new functions h and f which define
the conformal function U in (5). Two categories of solutions arise naturally in the analysis.
In the first category (h = 0) we found a general class of solutions in terms of elementary
functions. This contains the solutions of Castejon-Amenedo and Coley (1992) as special
cases. In the second category (h �= 0) we invoked the method of Lie group analysis to solve a
master field equation which allowed us to obtain various exact solutions for the metric under
consideration. Four cases arise depending on the Lie symmetry generators (we ignore the non-
reducible case). Three of the cases were readily solvable, in general, in terms of elementary
functions. However, we were only able to provide special solutions in the remaining case.

This was analysed further for physical plausibility by considering a particular solution.
We demonstrated that in this case that the solution can be expressed in terms of Bessel and
modified Bessel functions. The positivity of pressure and energy density in this case ensured
its relevance for the description of some cosmological processes. All solutions found via the
Lie method could be used in both h = 0 and h �= 0 cases. This treatment demonstrates
the importance of the method of Lie group analysis in seeking solutions to the Einstein field
equations.
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